organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

3-(4-Chlorophenyl)-5-(4-methylphenyl)-1-phenyl-2-pyrazoline

Huan-Mei Guo,^a Fang-Fang Jian,^b* Pu-Su Zhao,^b Ben-Yu Huang^c and Cui-Hua Lin^a

^aDepartment of Chemistry, Weifang University, Weifang 261061, People's Republic of China, ^bNew Materials and Function Coordination Chemistry Laboratory, Qingdao University of Science and Technology, Qingdao 266042, People's Republic of China, and ^cDepartment of Chemistry, Weifang University, Weifang 261061, People's Republic of China.

Correspondence e-mail: ffj2003@163169.net

Received 15 April 2007; accepted 16 April 2007

Key indicators: single-crystal X-ray study; T = 294 K; mean σ (C–C) = 0.005 Å; R factor = 0.055; wR factor = 0.145; data-to-parameter ratio = 16.4.

The title compound, $C_{22}H_{19}ClN_2$, was prepared by the reaction of phenylhydrazine and 1-(4-chlorophenyl)-3-(4-methylphenyl)prop-2-en-1-one. The pyrazoline ring forms dihedral angles of 1.50 (5)° with the phenyl ring, 8.44 (2)° with the chlorophenyl ring and 80.07 (1)° with the tolyl ring.

Related literature

For related literature, see: Dhal *et al.* (1975); Fahrni *et al.* (2003); Ge (2006); Guo *et al.* (2006); Kimura *et al.* (1977); Lombardino & Ottemes (1981); Rawal *et al.* (1963); Rurack *et al.* (2000); Manna *et al.* (2002).

b = 5.698 (3) Å c = 14.232 (6) Å $\beta = 96.557 (8)^{\circ}$ $V = 1902.6 (15) \text{ Å}^{3}$

Experimental

Crystal data

$C_{22}H_{19}ClN_2$
$M_r = 346.84$
Monoclinic, C2
a = 23.614 (11) Å

Z = 4Mo $K\alpha$ radiation $\mu = 0.21 \text{ mm}^{-1}$

Data collection

```
Bruker SMART CCD
diffractometer
Absorption correction: multi-scan
(SADABS; Bruker, 1997)
T_{\rm min} = 0.929, T_{\rm max} = 0.960
```

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.055$ $wR(F^2) = 0.145$ S = 0.983715 reflections 227 parameters 1 restraint T = 294 (2) K 0.36 × 0.20 × 0.20 mm

5424 measured reflections 3715 independent reflections 2190 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.053$

H-atom parameters constrained $\Delta \rho_{max} = 0.16 \text{ e} \text{ Å}^{-3}$ $\Delta \rho_{min} = -0.22 \text{ e} \text{ Å}^{-3}$ Absolute structure: Flack (1983), 1575 Friedel Pairs Flack parameter: -0.03 (10)

Data collection: *SMART* (Bruker, 1997); cell refinement: *SAINT* (Bruker, 1997); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *SHELXTL* (Bruker, 1997); software used to prepare material for publication: *SHELXTL*.

The authors thank the Natural Science Foundation of Shandong Province (grant No. Y2005B04) and the Doctoral Fund of Qingdao University of Science and Technology.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT2344).

References

- Bruker (1997). SADABS, SMART, SAINT and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.
- Dhal, P. N., Acharya, T. E. & Nayak, A. (1975). J. Indian Chem. Soc. 52, 1196– 1200.
- Fahrni, C. J., Yang, L. C. & VanDerveer, D. G. (2003). J. Am. Chem. Soc. 125, 3799–3812.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Ge, W.-Z. (2006). Acta Cryst. E62, 03109-03110.
- Guo, H.-M., Jian, F.-F., Zhou, L.-Y., Zhao, P.-S. & Zheng, J. (2006). Acta Cryst. E62, 04337–04338.
- Kimura, T., Kai, Y., Yasuoka, N. & Kasai, N. (1977). Acta Cryst. B33, 1786– 1792.
- Lombardino, G. & Ottemes, I. G. (1981). J. Med. Chem. 24, 830-834.
- Manna, F., Chimenti, F., Bolasco, A., Secci, D., Bizzarri, B., Befani, O., Turini, P., Mondovi, B., Alcaro, S. & Tafi, A. (2002). *Bioorg. Med. Chem. Lett.* 12, 3629–3635.
- Rawal, A. A., Thakor, V. M. & Shah, N. M. (1963). J. Indian Chem. Soc. 40, 323–326.
- Rurack, K., Bricks, J. L., Schulz, B., Maus, M., Reck, G. & Resch-Genger, U. (2000). J. Phys. Chem. A, 104, 6171–6174.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

Acta Cryst. (2007). E63, o2622 [doi:10.1107/81600536807018867]

3-(4-Chlorophenyl)-5-(4-methylphenyl)-1-phenyl-2-pyrazoline

H.-M. Guo, F.-F. Jian, P.-S. Zhao, B.-Y. Huang and C.-H. Lin

Comment

Pyrazoline and its derivatives are important and useful five-membered heterocyclic compounds, which are found to possess antiviral (Rawal *et al.*, 1963), antifungal (Dhal *et al.*, 1975), and immunosuppressive (Lombardino & Ottemes ,1981) activities. 1-Acetyl-3,5-diaryl-2-pyrazoline have been found to inhibit monoamine oxidases (Manna *et al.*, 2002). As part of our ongoing investgation of pyrazolines and their metal complexes, we report here the crystal structure of the title compound. In the structure of the title compound, all bond lengthes and bond angles fall in the normal range (Rurack *et al.*, 2000; Fahrni *et al.*, 2003; Ge, 2006; Guo *et al.*, 2006; Kimura *et al.*, 1977). The pyrazoline ring forms dihedral angles of 1.50 (5)° with the phenyl ring, 8.44 (2)° with the chlorophenyl ring and 80.07 (1)° with the tolyl ring.

Experimental

1-(4-chlorophenyl)-3-(4-methylphenyl)-2-propenyl-1-ketone (0.02 mol) and phenylhydrazine (0.02 mol) were mixed in acetic acid (40 ml) and stirred under reflux for 6 h. Then, the mixture was poured into ice-water to afford a light yellow solid which was filtrated and washed with water until the pH of the solution was about 7.0. Finally, the yellow solid was dry at room temperature. Single crystals of the title compound suitable for X-ray measurements were obtained by recrystallization from EtOH at room temperature.

Refinement

H atoms were geometrically positioned and allowed to ride on their parent atoms with C—H distances ranging from 0.93 to 0.96 Å, and with $U_{iso}=1.2U_{eq}(C)$ or $U_{iso}=1.5U_{eq}(C_{methyl})$. The methyl group was allowed to rotate but not to tip.

Figures

Fig. 1. The molecular structure and atom-labeling scheme for (I), with displacement ellipsoids drawn at the 30% probability level.

3-(4-Chlorophenyl)-5-(4-methylphenyl)-1-phenyl-2-pyrazoline

Crystal data C₂₂H₁₉ClN₂

C ₂₂ H ₁₉ ClN ₂	$F_{000} = 728$
$M_r = 346.84$	$D_{\rm x} = 1.211 { m Mg m}^{-3}$

Monoclinic, C2 Hall symbol: C 2y a = 23.614 (11) Å b = 5.698 (3) Å c = 14.232 (6) Å $\beta = 96.557 \ (8)^{\circ}$ $V = 1902.6 (15) \text{ Å}^3$ Z = 4

D

Data collection	
Bruker SMART CCD diffractometer	3715 independent reflections
Radiation source: fine-focus sealed tube	2190 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\text{int}} = 0.053$
T = 294(2) K	$\theta_{\text{max}} = 26.5^{\circ}$
φ and ω scans	$\theta_{\min} = 1.4^{\circ}$
Absorption correction: multi-scan (SADABS; Bruker, 1997)	$h = -29 \rightarrow 14$
$T_{\min} = 0.929, \ T_{\max} = 0.960$	$k = -7 \rightarrow 7$
5424 measured reflections	$l = -14 \rightarrow 17$

Mo Kα radiation

Cell parameters from 1354 reflections

 $\lambda = 0.71073 \text{ Å}$

 $\theta = 2.4 - 20.7^{\circ}$

 $\mu = 0.21 \text{ mm}^{-1}$ T = 294 (2) K

Block, yellow

 $0.36 \times 0.20 \times 0.20 \text{ mm}$

Refinement

Refinement on F^2	Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full	H-atom parameters constrained
$R[F^2 > 2\sigma(F^2)] = 0.055$	$w = 1/[\sigma^2(F_o^2) + (0.0683P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$
$wR(F^2) = 0.145$	$(\Delta/\sigma)_{\rm max} = 0.001$
<i>S</i> = 0.98	$\Delta \rho_{max} = 0.16 \text{ e} \text{ Å}^{-3}$
3715 reflections	$\Delta \rho_{min} = -0.22 \text{ e } \text{\AA}^{-3}$
227 parameters	Extinction correction: none
1 restraint	Absolute structure: Flack (1983), 1575 Friedel Pairs
Primary atom site location: structure-invariant direct methods	Flack parameter: -0.03 (10)

Secondary atom site location: difference Fourier map

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F² against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F², conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2$ sigma(F^2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

	x	У	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$
Cl1	0.73839 (4)	-0.3110 (2)	-0.21682 (6)	0.0832 (4)
N1	0.57116 (11)	-0.0088 (5)	0.12353 (18)	0.0557 (7)
N2	0.54873 (12)	-0.0243 (6)	0.2088 (2)	0.0673 (9)
C1	0.63565 (14)	-0.0426 (6)	-0.0378 (2)	0.0546 (9)
H1	0.6129	0.0899	-0.0347	0.066*
C2	0.66528 (15)	-0.0759 (7)	-0.1148 (2)	0.0584 (9)
H2	0.6622	0.0336	-0.1636	0.070*
C3	0.69960 (13)	-0.2719 (7)	-0.1199 (2)	0.0542 (9)
C4	0.70369 (13)	-0.4384 (6)	-0.0491 (2)	0.0549 (9)
H4	0.7262	-0.5709	-0.0534	0.066*
C5	0.67375 (13)	-0.4067 (6)	0.0290 (2)	0.0526 (8)
Н5	0.6766	-0.5190	0.0768	0.063*
C6	0.63962 (13)	-0.2088 (6)	0.0365 (2)	0.0461 (8)
C7	0.60807 (13)	-0.1782 (6)	0.1194 (2)	0.0497 (8)
C8	0.61383 (13)	-0.3355 (7)	0.2059 (2)	0.0596 (9)
H8A	0.6533	-0.3478	0.2334	0.071*
H8B	0.5991	-0.4915	0.1906	0.071*
С9	0.57695 (13)	-0.2056 (7)	0.2740 (2)	0.0581 (9)
Н9	0.5483	-0.3128	0.2943	0.070*
C10	0.61184 (14)	-0.0972 (6)	0.3604 (2)	0.0527 (9)
C11	0.61394 (16)	-0.1990 (7)	0.4492 (3)	0.0687 (10)
H11	0.5935	-0.3359	0.4568	0.082*
C12	0.64627 (17)	-0.0988 (8)	0.5272 (3)	0.0758 (12)
H12	0.6469	-0.1711	0.5859	0.091*
C13	0.67719 (14)	0.1039 (7)	0.5199 (3)	0.0641 (10)
C14	0.67548 (15)	0.2027 (8)	0.4303 (3)	0.0713 (10)
H14	0.6964	0.3383	0.4225	0.086*
C15	0.64357 (14)	0.1053 (7)	0.3523 (3)	0.0634 (10)
H15	0.6434	0.1768	0.2935	0.076*
C16	0.71137 (17)	0.2189 (10)	0.6050 (3)	0.0929 (13)
H16A	0.7087	0.1247	0.6603	0.139*
H16B	0.6963	0.3724	0.6146	0.139*
H16C	0.7506	0.2318	0.5938	0.139*
C17	0.50758 (12)	0.1382 (7)	0.2305 (2)	0.0576 (9)
C18	0.48671 (14)	0.1344 (9)	0.3186 (3)	0.0790 (12)
H18	0.4996	0.0222	0.3635	0.095*
C19	0.44610 (16)	0.3015 (10)	0.3387 (3)	0.0926 (15)
H19	0.4323	0.2994	0.3973	0.111*
C20	0.42645 (17)	0.4677 (9)	0.2732 (4)	0.0899 (14)
H20	0.3998	0.5783	0.2879	0.108*
C21	0.44620 (16)	0.4709 (9)	0.1856 (3)	0.0837 (13)
H21	0.4325	0.5828	0.1411	0.100*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\mathring{A}^2)

C22	0.48642 (14)	0.3075 (8)	0.163	6 (3)	0.0677 (10)	
H22	0.4994	0.3103	0.104	13	0.081*	
Atomic dis	nlacement parameters	$(Å^2)$				
monne uis	U^{11}	1) ²²	LJ ³³	U ¹²	U ¹³	U^{23}
Cl1	0.0870 (6)	0 1050 (9)	0.0608 (6)	-0.0051(7)	0.0219(5)	-0.0197(6)
N1	0.0523 (16)	0.0607 (19)	0.0538(17)	0.00014(15)	0.0219(3)	0.0023(15)
N2	0.0647 (18)	0.081(2)	0.0590(17)	0.0284 (18)	0.0186 (15)	0.0025 (18)
C1	0.062 (2)	0.047(2)	0.055 (2)	0.0068 (18)	0.0068 (17)	0.0026 (18)
C2	0.073(2)	0.052(2)	0.049(2)	-0.006(2)	0.0048 (18)	0.0021 (18)
C3	0.0514 (18)	0.065(2)	0.0471 (18)	-0.0036(19)	0.0083 (15)	-0.0104(19)
C4	0.0518 (19)	0.052 (2)	0.060 (2)	0.0076 (16)	0.0026 (17)	-0.0105 (19)
C5	0.0538 (17)	0.048 (2)	0.055 (2)	0.0078 (17)	0.0040 (16)	0.0055 (17)
C6	0.0452 (16)	0.0459 (19)	0.0458 (18)	0.0002 (16)	-0.0005 (14)	0.0012 (15)
C7	0.0474 (17)	0.050 (2)	0.0506 (19)	0.0046 (17)	0.0007 (15)	-0.0014 (17)
C8	0.0660 (19)	0.058 (2)	0.0562 (19)	0.009 (2)	0.0112 (16)	0.0097 (19)
C9	0.0570 (19)	0.058 (2)	0.061 (2)	0.0067 (18)	0.0129 (17)	0.010 (2)
C10	0.0565 (19)	0.050 (2)	0.055 (2)	0.0079 (16)	0.0212 (17)	0.0109 (17)
C11	0.092 (3)	0.055 (2)	0.063 (2)	-0.016 (2)	0.023 (2)	0.008 (2)
C12	0.104 (3)	0.073 (3)	0.052 (2)	-0.008 (3)	0.015 (2)	0.005 (2)
C13	0.066 (2)	0.060 (3)	0.069 (3)	0.001 (2)	0.0210 (19)	-0.005 (2)
C14	0.067 (2)	0.058 (2)	0.092 (3)	-0.003 (2)	0.021 (2)	0.012 (3)
C15	0.065 (2)	0.060 (2)	0.067 (2)	-0.006 (2)	0.0146 (19)	0.020 (2)
C16	0.100 (3)	0.091 (3)	0.086 (3)	-0.002 (3)	0.007 (2)	-0.017 (3)
C17	0.0423 (16)	0.065 (2)	0.065 (2)	0.0058 (18)	0.0028 (16)	-0.007 (2)
C18	0.062 (2)	0.099 (3)	0.080 (3)	0.011 (2)	0.026 (2)	-0.002 (3)
C19	0.062 (2)	0.126 (4)	0.095 (3)	0.010 (3)	0.031 (2)	-0.019 (3)
C20	0.062 (2)	0.096 (4)	0.113 (4)	0.025 (3)	0.011 (3)	-0.021 (3)
C21	0.066 (2)	0.090 (3)	0.093 (3)	0.025 (2)	0.000 (2)	-0.016 (3)
C22	0.0519 (19)	0.081 (3)	0.067 (2)	0.011 (2)	-0.0046 (18)	-0.013(2)

Geometric parameters (Å, °)

N1—C71.306 (4)C11—H110.9300N1—N21.382 (4)C12—C131.377 (5)N2—C171.402 (4)C12—H120.9300N2—C91.493 (4)C13—C141.390 (5)C1—C21.379 (4)C13—C161.525 (5)C1—C61.415 (4)C14—C151.384 (5)C1—H10.9300C14—H140.9300C2—C31.387 (5)C15—H150.9300C2—H20.9300C16—H16A0.9600C3—C41.379 (5)C16—H16B0.9600C4—C51.396 (4)C16—H16C0.9600C4—H40.9300C17—C181.399 (5)C5—C61.398 (4)C17—C221.407 (5)C5—H50.9300C18—C191.404 (6)	Cl1—C3	1.755 (3)	C11—C12	1.396 (5)
N1—N2 $1.382 (4)$ C12—C13 $1.377 (5)$ N2—C17 $1.402 (4)$ C12—H12 0.9300 N2—C9 $1.493 (4)$ C13—C14 $1.390 (5)$ C1—C2 $1.379 (4)$ C13—C16 $1.525 (5)$ C1—C6 $1.415 (4)$ C14—C15 $1.384 (5)$ C1—H1 0.9300 C14—H14 0.9300 C2—C3 $1.387 (5)$ C15—H15 0.9300 C2—H2 0.9300 C16—H16A 0.9600 C3—C4 $1.379 (5)$ C16—H16B 0.9600 C4—C5 $1.396 (4)$ C16—H16C 0.9600 C4—H4 0.9300 C17—C18 $1.399 (5)$ C5—C6 $1.398 (4)$ C17—C22 $1.407 (5)$ C5—H5 0.9300 C18—C19 $1.404 (6)$	N1—C7	1.306 (4)	C11—H11	0.9300
N2—C171.402 (4)C12—H120.9300N2—C91.493 (4)C13—C141.390 (5)C1—C21.379 (4)C13—C161.525 (5)C1—C61.415 (4)C14—C151.384 (5)C1—H10.9300C14—H140.9300C2—C31.387 (5)C15—H150.9300C2—H20.9300C16—H16A0.9600C3—C41.379 (5)C16—H16B0.9600C4—C51.396 (4)C16—H16C0.9600C4—H40.9300C17—C181.399 (5)C5—C61.398 (4)C17—C221.407 (5)C5—H50.9300C18—C191.404 (6)	N1—N2	1.382 (4)	C12—C13	1.377 (5)
N2—C9 $1.493 (4)$ C13—C14 $1.390 (5)$ C1—C2 $1.379 (4)$ C13—C16 $1.525 (5)$ C1—C6 $1.415 (4)$ C14—C15 $1.384 (5)$ C1—H1 0.9300 C14—H14 0.9300 C2—C3 $1.387 (5)$ C15—H15 0.9300 C2—H2 0.9300 C16—H16A 0.9600 C3—C4 $1.379 (5)$ C16—H16B 0.9600 C4—C5 $1.396 (4)$ C16—H16C 0.9600 C4—H4 0.9300 C17—C18 $1.399 (5)$ C5—C6 $1.398 (4)$ C17—C22 $1.407 (5)$ C5—H5 0.9300 C18—C19 $1.404 (6)$	N2—C17	1.402 (4)	С12—Н12	0.9300
$\begin{array}{cccccccc} C1-C2 & 1.379(4) & C13-C16 & 1.525(5) \\ C1-C6 & 1.415(4) & C14-C15 & 1.384(5) \\ C1-H1 & 0.9300 & C14-H14 & 0.9300 \\ C2-C3 & 1.387(5) & C15-H15 & 0.9300 \\ C2-H2 & 0.9300 & C16-H16A & 0.9600 \\ C3-C4 & 1.379(5) & C16-H16B & 0.9600 \\ C4-C5 & 1.396(4) & C16-H16C & 0.9600 \\ C4-H4 & 0.9300 & C17-C18 & 1.399(5) \\ C5-C6 & 1.398(4) & C17-C22 & 1.407(5) \\ C5-H5 & 0.9300 & C18-C19 & 1.404(6) \\ \end{array}$	N2—C9	1.493 (4)	C13—C14	1.390 (5)
C1—C61.415 (4)C14—C151.384 (5)C1—H10.9300C14—H140.9300C2—C31.387 (5)C15—H150.9300C2—H20.9300C16—H16A0.9600C3—C41.379 (5)C16—H16B0.9600C4—C51.396 (4)C16—H16C0.9600C4—H40.9300C17—C181.399 (5)C5—C61.398 (4)C17—C221.407 (5)C5—H50.9300C18—C191.404 (6)	C1—C2	1.379 (4)	C13—C16	1.525 (5)
C1—H10.9300C14—H140.9300C2—C31.387 (5)C15—H150.9300C2—H20.9300C16—H16A0.9600C3—C41.379 (5)C16—H16B0.9600C4—C51.396 (4)C16—H16C0.9600C4—H40.9300C17—C181.399 (5)C5—C61.398 (4)C17—C221.407 (5)C5—H50.9300C18—C191.404 (6)	C1—C6	1.415 (4)	C14—C15	1.384 (5)
C2—C31.387 (5)C15—H150.9300C2—H20.9300C16—H16A0.9600C3—C41.379 (5)C16—H16B0.9600C4—C51.396 (4)C16—H16C0.9600C4—H40.9300C17—C181.399 (5)C5—C61.398 (4)C17—C221.407 (5)C5—H50.9300C18—C191.404 (6)	С1—Н1	0.9300	C14—H14	0.9300
C2—H20.9300C16—H16A0.9600C3—C41.379 (5)C16—H16B0.9600C4—C51.396 (4)C16—H16C0.9600C4—H40.9300C17—C181.399 (5)C5—C61.398 (4)C17—C221.407 (5)C5—H50.9300C18—C191.404 (6)	C2—C3	1.387 (5)	С15—Н15	0.9300
C3-C41.379 (5)C16-H16B0.9600C4-C51.396 (4)C16-H16C0.9600C4-H40.9300C17-C181.399 (5)C5-C61.398 (4)C17-C221.407 (5)C5-H50.9300C18-C191.404 (6)	С2—Н2	0.9300	C16—H16A	0.9600
C4—C51.396 (4)C16—H16C0.9600C4—H40.9300C17—C181.399 (5)C5—C61.398 (4)C17—C221.407 (5)C5—H50.9300C18—C191.404 (6)	C3—C4	1.379 (5)	C16—H16B	0.9600
C4—H40.9300C17—C181.399 (5)C5—C61.398 (4)C17—C221.407 (5)C5—H50.9300C18—C191.404 (6)	C4—C5	1.396 (4)	C16—H16C	0.9600
C5—C61.398 (4)C17—C221.407 (5)C5—H50.9300C18—C191.404 (6)	C4—H4	0.9300	C17—C18	1.399 (5)
C5—H5 0.9300 C18—C19 1.404 (6)	C5—C6	1.398 (4)	C17—C22	1.407 (5)
	С5—Н5	0.9300	C18—C19	1.404 (6)

C6—C7	1.476 (4)	C18—H18	0.9300
С7—С8	1.517 (4)	C19—C20	1.372 (7)
C8—C9	1.561 (4)	С19—Н19	0.9300
C8—H8A	0.9700	C20—C21	1.380 (6)
С8—Н8В	0.9700	С20—Н20	0.9300
C9—C10	1.530 (5)	C21—C22	1.391 (5)
С9—Н9	0.9800	C21—H21	0.9300
C10—C11	1.386 (5)	C22—H22	0.9300
C10—C15	1.388 (5)		
C7—N1—N2	108 5 (3)	C10-C11-C12	120 9 (3)
N1 - N2 - C17	1197(3)	C10-C11-H11	119.5
N1 - N2 - C9	113.6 (2)	C12—C11—H11	119.5
$C_{17} - N_{2} - C_{9}$	1263(3)	C13 - C12 - C11	121.9 (4)
$C_2 - C_1 - C_6$	120.5(3) 120.4(3)	C13 - C12 - H12	119.0
C2-C1-H1	119.8	C11 - C12 - H12	119.0
C6-C1-H1	119.8	C12-C13-C14	116.7 (4)
C1 - C2 - C3	120.3 (3)	C12 - C13 - C16	1225(4)
C1 - C2 - H2	119.8	$C_{12} = C_{13} = C_{16}$	122.3(1) 120.8(4)
C_{3} C_{2} H_{2}	119.8	C_{15} C_{14} C_{13} C_{15} C_{14} C_{13}	120.0(4) 121.9(4)
C_{1}^{-} C_{2}^{-} C_{2}^{-} C_{2}^{-}	120.6 (3)	$C_{15} = C_{14} = H_{14}$	110.0
$C_{4} = C_{3} = C_{2}$	120.0(3) 110.2(3)	C13 - C14 - H14	119.0
$C_{2} = C_{3} = C_{11}$	119.2(3) 120.2(3)	$C_{13} - C_{14} - C_{15} - C_{10}$	117.0 121.1(3)
$C_2 = C_3 = C_1$	120.2(3)	$C_{14} = C_{15} = C_{10}$	121.1 (5)
$C_3 = C_4 = C_3$	119.5 (5)	$C_{14} = C_{15} = H_{15}$	119.4
$C_5 = C_4 = H_4$	120.2	C12 C16 H16A	119.4
C_{3}	120.2	C_{13} C_{16} H_{16} H_{16}	109.5
$C_4 = C_5 = C_0$	120.9 (3)		109.5
C4C5	119.5	$C_{12} = C_{16} = H_{16}C_{16}$	109.5
	119.5		109.5
$C_{5} = C_{6} = C_{7}$	110.2(3)	H16A-C16-H16C	109.5
$C_{3} = C_{0} = C_{7}$	120.3(3) 121.5(2)	$\begin{array}{cccc} \text{III} & \text{III} & \text{III} \\ \text{III} & \text{III} & \text{III} \\ \text{III} & \text{III} & \text{III} \\ \end{array}$	109.5 120.7(2)
N1 C7 C6	121.5(3)	$C_{10} - C_{17} - N_2$	120.7(3)
N1 - C7 - C8	121.5(3) 112.5(3)	$N_{2} = C_{17} = C_{22}$	110.9(3)
$N_1 = C_1 = C_8$	113.5 (3)	$N_2 = C_1 7 = C_{22}$	120.4(3)
$C_{0} - C_{1} - C_{8}$	124.9(3)	C17 - C18 - C19	119.4 (4)
$C_7 = C_8 = U_8 \Lambda$	102.0 (5)	$C_{1/-}C_{18} = H_{18}$	120.5
$C_{1} = C_{0} = C_{0} = H_{0}^{0} A$	111.2	C19 - C18 - H18	120.5
$C_{2} = C_{2} = H_{2} = H_{2}$	111.2	$C_{20} = C_{19} = C_{18}$	121.1 (4)
$C_{1} = C_{0} = C_{0} = C_{0}$	111.2	C18 C19 H19	119.4
	111.2	C18—C19—H19	119.4
H8A—C8—H8B	109.2	$C_{19} = C_{20} = C_{21}$	120.0 (4)
$N_2 = C_9 = C_{10}$	112.4 (3)	$C_{19} - C_{20} - H_{20}$	120.0
$N_2 = C_9 = C_8$	100.0(2)	$C_{21} - C_{20} - H_{20}$	120.0
C10-C9-C8	113.7 (3)	$C_{20} = C_{21} = C_{22}$	120.5 (4)
	109.9	$C_{20} = C_{21} = H_{21}$	119.8
С10—С9—Н9	109.9	C22—C21—H21	119.8
$C_0 - C_9 - H_9$	109.9	$C_{21} = C_{22} = C_{17}$	120.3 (4)
	11/.4 (4)	$C_{21} = C_{22} = H_{22}$	119.8
C11—C10—C9	121.0 (3)	U1/—U22—H22	119.8
CIS-CI0-C9	121.0 (3)		

C7—N1—N2—C17	-179.7 (3)	N2-C9-C10-C11	142.3 (3)
C7—N1—N2—C9	6.6 (4)	C8—C9—C10—C11	-104.2 (4)
C6—C1—C2—C3	-0.4 (5)	N2-C9-C10-C15	-39.0 (4)
C1—C2—C3—C4	1.3 (5)	C8—C9—C10—C15	74.5 (4)
C1—C2—C3—Cl1	-178.7 (3)	C15-C10-C11-C12	0.8 (5)
C2—C3—C4—C5	-1.1 (5)	C9-C10-C11-C12	179.6 (3)
Cl1—C3—C4—C5	178.9 (2)	C10-C11-C12-C13	0.1 (6)
C3—C4—C5—C6	0.1 (5)	C11-C12-C13-C14	-1.0 (6)
C4—C5—C6—C1	0.8 (4)	C11-C12-C13-C16	178.3 (4)
C4—C5—C6—C7	179.8 (3)	C12—C13—C14—C15	1.1 (6)
C2—C1—C6—C5	-0.6 (4)	C16—C13—C14—C15	-178.2 (3)
C2—C1—C6—C7	-179.6 (3)	C13-C14-C15-C10	-0.2 (6)
N2—N1—C7—C6	-179.9 (3)	C11-C10-C15-C14	-0.7 (5)
N2—N1—C7—C8	0.9 (4)	C9-C10-C15-C14	-179.6 (3)
C5—C6—C7—N1	-172.5 (3)	N1—N2—C17—C18	-176.2 (3)
C1—C6—C7—N1	6.5 (5)	C9—N2—C17—C18	-3.3 (5)
C5—C6—C7—C8	6.7 (5)	N1—N2—C17—C22	4.0 (5)
C1—C6—C7—C8	-174.3 (3)	C9—N2—C17—C22	176.9 (3)
N1—C7—C8—C9	-7.2 (4)	N2-C17-C18-C19	179.1 (4)
C6—C7—C8—C9	173.6 (3)	C22-C17-C18-C19	-1.1 (5)
N1—N2—C9—C10	110.9 (3)	C17—C18—C19—C20	0.2 (6)
C17—N2—C9—C10	-62.4 (4)	C18—C19—C20—C21	0.7 (7)
N1—N2—C9—C8	-10.4 (4)	C19—C20—C21—C22	-0.6 (7)
C17—N2—C9—C8	176.3 (3)	C20-C21-C22-C17	-0.3 (6)
C7—C8—C9—N2	9.7 (3)	C18—C17—C22—C21	1.2 (5)
C7—C8—C9—C10	-110.7 (3)	N2-C17-C22-C21	-179.1 (3)

